"Манаш Қозыбаев атындағы
Солтүстік Қазақстан университеті"
коммерциялық емес акционерлік қоғамы
Үлкейтілген
Сөздәйектер галереясы

Адамның біліміне ақыл серік, ақыл кен таусылмайтын жанға көрік.

Ақансері Қорамсаұлы
Факультеттер жаңалықтары
АФ: Дала күні

2025 жылғы 26 маусымда «Сервис-ЖАРС» ЖШС (Қызылжар ауданы, СҚО) өндірістік танаптарында «Солтүстік Қазақстанның орман-дала аймағындағы жайылымдардың ө әрі қарай оқу

ТжӘИ: «Мағжан Жұмабаев: тұлға, әдеби үрдіс және тілтаным» атты Халықаралық ғылыми-практикалық конференция

М.Қозыбаев атындағы Солтүстік Қазақстан университеті Тіл және әдебиетинституты «Қазақ тілі мен әдебиеті» кафедрасы 2025 жылдың 19 маусымында көрнекті  әрі қарай оқу

Барлығын оқу

Data Fusion жүйесіне біріктірілген оптикалық-электрондық арна арқылы ҰҰА танудың нейрондық үлгісін әзірлеу

Зерттеуді Қазақстан Республикасы Ғылым және жоғары білім министрлігінің Ғылым комитеті қаржыландырады (грант № АР19679009).

Жоба жетекшісі: Курмашев И.Г., т.ғ.к.

Жоба орындаушылары: Курмашев И.Г., т.ғ.к., Сербин Василий Валерьевич, т.ғ.к., Арричиелло Филиппо, т.ғ.д., Семенюк В.В., магистр, Алёшин Д.В., магистр, Крючков В.Н., магистр, Курмашева Л.Б., магистр.

Орындалу мерзімі: 2023 – 2025 жж.

Жобаның мақсаты: «FMCW-радар + бейнебақылау» платформасына бейімделген, оптикалық арнаны және нысананың микродоплерлік сипаттамаларын талдау арқылы құстардан осы объектілерді сапалы және жоғары дәлдікпен тану, жіктеу және ажырату функциясын орындайтын нейрондық желілер негізінде ҰҰА танудың бағдарламалық моделін әзірлеу.

Күтілетін нәтижелер: «FMCW-радар + бейнебақылау» жүйесінің оптикалық және радиолокациялық арнасына бейімделген нейрондық желілердің екі түрінің алгоритмдері негізінде ҰҰА танудың бағдарламалық моделін әзірлеу.

Жобаның сипаттамасы: Жобаның идеясы нейрондық желілердің бағдарламалық моделін құру болып табылады, олардың бірі дрондар мен құстардың жоғары дәлдіктегі классификациясының арқасында микродоплер қолтаңбаларының радиолокациялық бейнесі арқылы ҰҰА тануға арналған. Бағдарламалық модельдің екінші сегменті әуе кеңістігіндегі объектілердің бейне деректері мен фото-бейнелері (коптерлер, «ұшатын қанат» ұшқышсыз ұшу аппараттары, құстар және т.б.) арқылы ҰҰА-ны тануға арналған нейрондық желі қосымшасын анықтайды. Дамудың ерекшелігі − оны радиолокациялық жүйеге бейімдеу Антидрон негізінде бағдарламалық-аппараттық платформамен «Радар + оптикалық арна» екі анықтау арнасы арқылы ұшқышсыз ұшуды тануды автоматтандыру элементі ретінде. Әрине, әзірленіп жатқан бағдарламалық модельдің өнімділігі мен тиімділігі радиолокациялық жүйенің және оптикалық камераның сипаттамаларына байланысты, сондықтан міндеттердің бірі радиолокациялық модель мен бейнебақылау құралын таңдау және негіздеу болып табылады. Сондай-ақ, вибрация көздерінен нысанаға радиолокациялық сигналдың шағылысуының математикалық ерекшеліктері ұсынылады, бұл ұшатын объектілерді (ұшқышсыз ұшу аппараттары мен құстар үшін) тану үшін доплерлік көрсеткіштерді анықтайды.  Әзірленіп жатқан бағдарламалық модель біріктірілген Data Fusion жүйесінің құрылымдық сипаттамасы, зерттеу шеңберінде жіктеу және тану бағдарламаларының негізі ретінде қарастырылатын нейрондық желі алгоритмдерінің сипаттамалары.