Некоммерческое акционерное общество
"Северо-Казахстанский университет
имени Манаша Козыбаева"
Крупнее
Галерея цитат

Путь человека постигает тот, кто сущность пса в себе убьет.

Аль-Фараби
Новости факультетов
АФ: День поля

26 июня 2025 г. на производственных участках ТОО «Сервис-ЖАРС» (Кызылжарский район, СКО) был проведен День поля на тему: «Эффективные технологии повыш читать далее

ИЯиЛ: Международная научно-практическая конференция, посвященная выдающемуся поэту и национальному интеллектуалу Магжану Жумабаеву

Кафедра «Казахский язык и литература» Института языка и литературы Северо-Казахстанского университета имени М. Козыбаева 19 июня 2025 года проводит Ме читать далее

Читать все

Разработка нейросетевой модели распознавания БПЛА через оптико-электронный канал, интегрируемый в систему Data Fusion

Данное исследование финансируется Комитетом науки Министерства науки и высшего образования Республики Казахстан (грант № АР19679009).

Руководитель проекта: Курмашев И.Г., к.т.н.

Исполнители проекта: Курмашев И.Г., к.т.н., Сербин Василий Валерьевич, к.т.н., Арричиелло Филиппо, д.т.н., Семенюк В.В., магистр, Алёшин Д.В., магистр, Крючков В.Н., магистр, Курмашева Л.Б., магистр.

Сроки исполнения: 2023 – 2025 гг.

Цель проекта: Разработать программную модель распознавания БПЛА, на основе нейронных сетей, адаптированную в платформу «FMCW-радар + видеонаблюдение», выполняющее функцию качественного и высокоточного распознавания, классификации и различения данных объектов от птиц за счет анализа оптического канала и микродоплеровских характеристик цели.  

Ожидаемые результаты: Разработка программной модели распознавания БПЛА на основе алгоритмов двух типов нейронных сетей, адаптированных в оптический и радиолокационный канал системы «FMCW-радар+видеонаблюдение».

Описание проекта: Идея проекта заключается в создании программной модели нейронных сетей, одна из которых предназначена для распознавания БПЛА через радиолокационное изображение микродоплеровских сигнатур благодаря более высокоточной классификации беспилотников и птиц. Второй сегмент программной модели определяет нейросетевой приложение по распознаванию БПЛА через видеоданные и фото-изображения объектов в воздушном пространстве (коптеры, беспилотные летательные аппараты «летающее крыло», птицы и др.). Особенность разработки заключается в ее адаптации к радиолокационной системе Антидрон с программно-аппаратной платформой на основе «Радар + оптический канал» как элемента автоматизации распознавания БПЛА по двум каналам детектирования. Безусловно, работоспособность и эффективность разрабатываемой программной модели зависит от характеристик радиолокационной системы и оптической камеры, поэтому одним из пунктов задач является выбор и обоснование модели Радара и средства видеонаблюдения. Также будут представлены математические особенности отражения радиолокационного сигнала от цели с источников вибрации, что определяет доплеровские показатели для распознавания летающих объектов (для БПЛА и птиц).  Структурное описание системы Data Fusion, в которую интегрируется разрабатываемая программная модель, характеристики нейросетевых алгоритмов, которые рассматриваются как основа программ для классификации и распознавания в рамках исследования.